IGBT Module

STARPOWER

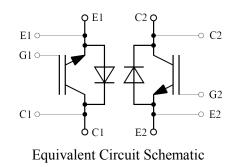
SEMICONDUCTOR

IGBT

GD800HFK170A3S

Molding Type Module

1700V/800A 2 in one-package


General Description

STARPOWER IGBT Power Module provides ultra low conduction loss as well as short circuit ruggedness. They are designed for the applications such as high power converters.

Features

- NPT IGBT technology
- 10µs short circuit capability
- $V_{CE(sat)}$ with positive temperature coefficient
- Maximum junction temperature 150°C
- Low inductance case
- Fast & soft reverse recovery anti-parallel FWD
- AlSiC baseplate for high power cycling capability
- AlN substrate for low thermal resistance

Typical Applications

- High Power Converters
- Motor Drives
- AC Inverter Drives

Symbol	Description	GD800HFK170A3S	Unit
V _{CES}	Collector-Emitter Voltage	1700	V
V _{GES}	Gate-Emitter Voltage	±20	V
	Collector Current $@ T_C = 25^{\circ}C$	1300	А
I _C	a T _C =80°C	800	A
I _{CM}	Pulsed Collector Current t _p =1ms	1600	Α
I _F	Diode Continuous Forward Current	800	Α
I _F I _{FM}	Diode Maximum Forward Current t _p =1ms	1600	Α
P _D	Maximum Power Dissipation @ $T_i = 150^{\circ}C$	5.53	kW
T _{jmax}	Maximum Junction Temperature	150	°C
T _{jop}	Operating Junction Temperature	-40 to +125	°C
T _{STG}	Storage Temperature Range	-40 to +125	°C
V _{ISO}	Isolation Voltage RMS,f=50Hz,t=1min	4000	V
	Terminal Connection Torque, Screw M4	1.8 to 2.1	
М	Terminal Connection Torque, Screw M8	8.0 to 10	N.m
	Mounting Torque, Screw M6	4.25 to 5.75	
G	Weight of Module	1050	g

Absolute Maximum Ratings T_C=25°C unless otherwise noted

Electrical Characteristics of IGBT T_C=25°C unless otherwise noted

Off Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	T _j =25°C	1700			V
I _{CES}	Collector Cut-Off Current	$V_{CE}=V_{CES}, V_{GE}=0V,$ $T_i=25^{\circ}C$			1.0	mA
I _{GES}	Gate-Emitter Leakage Current	$V_{GE}=V_{GES}, V_{CE}=0V,$ $T_j=25^{\circ}C$			400	nA

On Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$V_{\text{GE(th)}}$	Gate-Emitter Threshold Voltage	I_C =64.0mA, V_{CE} = V_{GE} , T_i =25°C	5.5	6.1	6.7	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I_{C} =800A, V_{GE} =15V, T_{j} =25°C		2.60	3.05	v
		I_{C} =800A, V_{GE} =15V, T_{j} =125°C		3.20		

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-On Delay Time	-		420		ns
t _r	Rise Time			135		ns
t _{d(off)}	Turn-Off Delay Time	V = 000 V I = 800 A		1150		ns
t _f	Fall Time	$-V_{CC}=900V,I_{C}=800A,$		125		ns
Eon	Turn-On Switching Loss	$R_{Gon}=1.2\Omega, R_{Goff}=1.8\Omega, V_{GE}=\pm15V, T_{j}=25^{\circ}C$		210		mJ
$\mathrm{E}_{\mathrm{off}}$	Turn-Off Switching Loss			245		mJ
t _{d(on)}	Turn-On Delay Time			500		ns
t _r	Rise Time			140		ns
t _{d(off)}	Turn-Off Delay Time			1300		ns
t _f	Fall Time	$V_{CC}=900V,I_{C}=800A,$		135		ns
E _{on}	Turn-On Switching Loss	$R_{Gon}=1.2\Omega, R_{Goff}=1.8\Omega, V_{GE}=\pm15V, T_{j}=125^{\circ}C$		285		mJ
E_{off}	Turn-Off Switching Loss			325		mJ
C _{ies}	Input Capacitance	V _{CE} =25V,f=1MHz, V _{GE} =0V		53.5		nF
C _{res}	Reverse Transfer Capacitance			2.82		nF
I _{SC}	SC Data	$\begin{array}{c} t_{P} \leq 10 \mu s, V_{GE} = 15 V, \\ T_{j} = 125^{\circ} C, V_{CC} = 1000 V, \\ V_{CEM} \leq 1700 V \end{array}$		4800		А
Q _G	Gate Charge	V_{GE} =-15+15V		9.50		μC
L _{CE}	Stray Inductance			20		nH
R _{CC'+EE'}	Module Lead Resistance, Terminal To Chip			0.37		mΩ

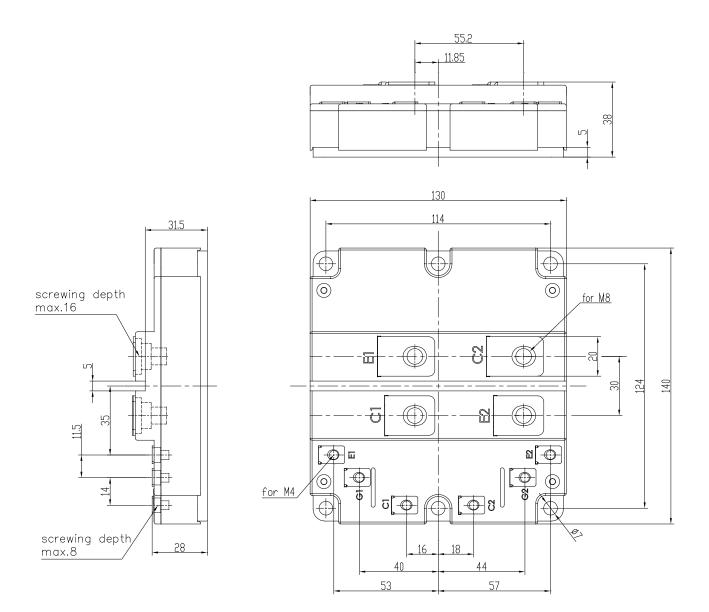
Switching Characteristics

Electrical Characteristics of Diode T_C=25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$V_{\rm F}$	Diode Forward	$I_{\rm F}$ =800A, $V_{\rm GE}$ =0V, $T_{\rm j}$ =25°C		1.80	2.25	V
	Voltage	$I_{\rm F}$ =800A, $V_{\rm GE}$ =0V, $T_{\rm j}$ =125°C		1.95		V
Qr	Recovered Charge			160		μC
I _{RM}	Peak Reverse	V _{CC} =900V,I _F =800A, -di/dt=6000A/μs,		700		А
	Recovery Current					A
E _{rec}	Reverse Recovery	$V_{GE}=\pm 15V, T_j=25^{\circ}C$		75.0		mJ
	Energy			75.0		IIIJ
Qr	Recovered Charge			300		μC
I _{RM}	Peak Reverse	V _{CC} =900V,I _F =800A,		850		А
	Recovery Current	-di/dt=6000A/µs,		850		A
E _{rec}	Reverse Recovery	V_{GE} =±15V,T _j =125°C		160		mJ
	Energy			100		1113

GD800HFK170A3S

Symbol	Parameter	Min.	Typ.	Max.	Unit
R _{thJC}	Junction-to-Case (per IGBT)			22.6	K/kW
	Junction-to-Case (per Diode)			47.6	K/KW
R _{thCH}	Case-to-Heatsink (per IGBT)		23.6		
	Case-to-Heatsink (per Diode)		49.7		K/kW
	Case-to-Heatsink (per Module)		8.0		


Module Characteristics $T_C=25^{\circ}C$ unless otherwise noted

GD800HFK170A3S

IGBT Module

Package Dimensions

Dimensions in Millimeters

Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see <u>www.powersemi.cc</u>), For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.